And whoever got the cultural reference receives a free internets.

______________________________

There are approximately two billion children (persons under 1 in the

world. However, since Santa does not visit children of Muslim, Hindu, Jewish

or Buddhist (except maybe in Japan) religions, this reduces the workload for

Christmas night to 15% of the total, or 378 million (according to the

population reference bureau). At an average (census) rate of 3.5 children

per household, that comes to 108 million homes, presuming there is at least

one good child in each.

Santa has about 31 hours of Christmas to work with, thanks to the different

time zones and the rotation of the earth, assuming east to west (which seems

logical). This works out to 967.7 visits per second. This is to say that for

each Christian household with a good child, Santa has around 1/1000th of a

second to park the sleigh, hop out, jump down the chimney, fill the

stocking, distribute the remaining presents under the tree, eat whatever

snacks have been left for him, get back up the chimney, jump into the sleigh

and get onto the next house.

Assuming that each of these 108 million stops is evenly distributed around

the earth (which, of course, we know to be false, but will accept for the

purposes of our calculations), we are now talking about 0.78 miles per

household; a total trip of 75.5 million miles, not counting bathroom stops

or breaks.

This means Santa's sleigh is moving at 650 miles per second--3,000 times the

speed of sound. For purposes of comparison, the fastest man made vehicle,

the Ulysses space probe, moves at a poky 27.4 miles per second, and a

conventional reindeer can run (at best) 15 miles per hour.

The payload of the sleigh adds another interesting element. Assuming that

each child gets nothing more than a medium sized LEGO set (two pounds), the

sleigh is carrying over 500 thousands tons, not counting Santa himself. On

land, a conventional reindeer can pull no more than 300 pounds. Even

granting that the "flying" reindeer can pull 10 times the normal amount, the

job can't be done with eight or even nine of them---Santa would need 360,000

of them. This increases the payload, not counting the weight of the sleigh,

another 54,000 tons, or roughly seven times the weight of the Queen

Elizabeth (the ship, not the monarch).

600,000 tons traveling at 650 miles per second creates enormous air

resistance¡. This would heat up the reindeer in the same fashion as a

spacecraft re-entering the earth's atmosphere. The lead pair of reindeer

would adsorb 14.3 quintillion joules of energy per second each. In short,

they would burst into flames almost instantaneously, exposing the reindeer

behind them and creating deafening sonic booms in their wake. The entire

reindeer team would be vaporized within 4.26 thousandths of a second, or

right about the time Santa reached the fifth house on his trip.

Not that it matters, however, since Santa, as a result of accelerating from

a dead stop to 650 m.p.s. in .001 seconds, would be subjected to

acceleration forces of 17,000 g's. A 250 pound Santa (which seems

ludicrously slim) would be pinned to the back of the sleigh by 4,315,015

pounds of force, instantly crushing his bones and organs and reducing him to

a quivering blob of pink goo.

______________________________

I guess this makes the "What do you want for Christmas?" thread obsolete...

## Bookmarks